

STOW-97 SYNTHETIC ENVIRONMENT

The Improved CGF Terrain DataBase Project (ICTDB) and Multiple Resolution Models in the Synthetic Environment

13 Aug 96

Alan Evans
SAIC
aevans@bos.saic.com

Tom Stanzione TASC tstanzione@tasc.com

ICTDB PROJECT GOALS

- Provide CGF terrain database representation that will satisfy the STOW requirements
 - High fidelity terrain and environment
 - Large geographic extents
 - Dynamic environment
 - Large numbers of entities
- Provide CGF terrain support for other STOW Synthetic Environment programs
 - Real-time atmosphere and ocean (WINDS/TAOS)
 - Dynamic terrain and objects (DTO)
 - Dynamic virtual worlds (DVW)

ICTDB DEVELOPMENT TASKS

These technical advances have been and are being implemented in the Open SAF Compact Terrain DataBase (CTDB)

INTEGRATED TRIANGULATED IRREGULAR NETWORKS

- CTDB patches originally gridded with overlaid microterrain polygons
- Inefficient for completed TINed databases
- Hybrid Representation was developed
 - CTDB Patches can be either gridded representation or ITIN representation
 - Gridded representation similar to previous format
 - Compiler / Reformatter can determine best representation for patch
 - Can also be user specified for entire database

INTEGRATED TRIANGULATED IRREGULAR NETWORKS

Three CTDB database types

- Pure TINed
 - TIN covers all of database extents
 - Every patch has significant microterrain
 - STOW-E
- Pure Gridded
 - Terrain based on regular grid
 - Some patches may have small amount of microterrain
 - Ft. Knox
- Hybrid
 - Two types
 - TIN covers portion of database extents
 - Range 400
 - Terrain based on regular grid, but many patches have significant microterrain
 - Ft. Hunter-Liggett

HYBRID REPRESENTATION

Transition patches

- Gridded patches that border TIN patches
- Converted to TINs so polygons align at edges
- Some retriangulation necessary along borders

RANGE 400 DATABASE

Variable resolution per patch on TINed database

VIRTUAL GRIDS

- Virtual grid overlaid on Terrain Elements
- Virtual grid based on number of TEs in patch
- Each grid mapped to 1
 TE based on area
 intersection
- Each TE can be mapped to multiple virtual grids

GLOBAL COORDINATE SYSTEM

- Divide globe up into 1 degree cells, except at extreme latitudes
- Implement local cartesian coordinate system within cells (offset/ rotated GCC)
- Retain true elevation values, not projection
- Transformations between GCS and GCC are linear
- Transformations between cells are linear
- Cell locations based on World Geographic Reference (GEOREF) System

GLOBAL COORDINATE SYSTEM

- Multiple CTDBs allow variable resolution between GCS cells
- Some GCS cells could contain "virtual DBs"

MULTIPLE ELEVATION SURFACES

- Unified representation for buildings, bridges, caves, and tunnels
 - MES Structures
 - Similarities in geometry and LOS characteristics
 - New Volume Feature type with reference to complex 3D structures
 - Building interior and topology explicitly represented
 - Virtual grid extended to 3 dimensions
 - CTDB still supports simple volumetric buildings as well

BUILDINGS IN CTDB

MES Structures

Simple Volume

TYPES OF MULTI-RES MODELING

- There are three approaches to variable resolution modeling (*):
 - Selected viewing
 - Alternative submodels
 - Integrated hierarchical variable resolution (IVHR)
- Examples of all three approaches in CTDB
 - (*) Davis and Huber, Variable-Resolution Combat Modeling: Motivation, Issues and Principles, RAND, N-3400-DARPA

SELECTED VIEWING

- LADS added capability to ModSAF in response to performance problems in ED#1
 - Not part of ICTDB project
- Motivation was to boost performance in Plan View Display rendering as zoom level changes
- Multiple CTDB views are created at database compilation
 - Ground truth (default highest resolution) database is thinned for use when zoomed out
 - No user choice in selections available during use

ALTERNATIVE SUBMODELS

- Multiple level of detail three dimensional models
 - SIMNET and DIS have always supported multiple LOD models
 - IG viewing range determines which LOD is selected
- Default model for buildings in CTDB is a simple roofline geometry / footprint description
- ICTDB has added Multiple Elevation Surface (MES) structure models for buildings
 - Complex building geometry and interior topology (enclosures and apertures)
- Software decides whether to use coarse geometry or detailed model based on function

PROTOTYPES FOR IVHR

- ICTDB has added two ways of making inset regions of high resolution
- Global Coordinate System is based on tiling the playbox into cells
 - Some cells could be course level of resolution (grid)
 - Cells in area of interest could be high resolution (TIN)
- Hybrid data bases are now supported
 - Local patches can be grids or TINs
 - Transition patches address consistency mechanism
- Both GCS and hybrid databases are static and have no concurrent levels of resolution, but basic technology advances have been made

PROTOTYPES FOR IVHR

- ITIN work added a key piece functionality the virtual grid
- Resolution of grid used for storage and retrieval of TIN data is tied to triangle density
- This bounds the complexity of the point location algorithm - key step in using TIN data
- Permits arbitrary resolution in terrain data
- Same idea used in 3D in implementing MES structures

FUTURE WORK

- Software mechanism to support concurrent levels of resolution (ivHr) must be developed
- Consistency (lvhr) is the hard part since we are dealing with geometry and ground truth
- Process for populating IVHR SE models must be developed
- Levels of resolution in the hierarchy must meet force modeling requirements
- Potential requirement for dynamic levels of resolution (iVhr) will pose real challenges
- These are the JSIMS challenges for ICTDB and other modelers of the Synthetic Environment